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Abstract 
Insect pollinators serve a critical role in maintaining plant biodiversity and are especially 
susceptible to changes within their environment. To study the possible effects of seasonal 
variation in temperature, as well as climatic temperature increase on the plant-pollinator 
community, the relationship between bumblebee and flowering plant traits along an 
elevational gradient, representing warming-induced changes in plant community, were 
examined. Two hypotheses were tested; 1) if plant traits can predict visiting bumblebee 
proboscis length, and 2) if the relationship between plant traits and proboscis length is 
influenced by elevation, and the progression of the growing season. The study took place 
along an elevational gradient on Mt. Nuolja in Abisko National Park, Sweden. During 
surveys bumblebees were caught and measured. Flowers visited by captured bumblebees 
were collected, categorized by restrictiveness (i.e., whether or not the flower require a certain 
proboscis length, in order to access the nectar and pollen rewards) and floral traits measured 
(e.g., petal length). The results revealed that petal length was a significant predictor of 
bumblebee proboscis length, when taking restrictiveness into account. Furthermore, the 
relationship became weaker with increasing elevation for restrictive flowers but stronger for 
unrestrictive flowers. These findings show that trait-matching between bumblebees and 
flowers is an influential factor for flower selection and is affected by climatic temperature. 
This highlights the importance of considering individual-level traits when studying plant 
preference and creates a framework for assessing plant-pollinator networks. Future studies 
should examine additional traits that could explain the apparent size matching between 
unrestrictive flowers and proboscis.  
 
Key Words: Arctic climate change; Bombus; Flower morphology; Plant-pollinator trait-
matching   
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1 Introduction 
1.1 Background 
The distribution of species is determined by abiotic and biotic factors, which makes it 
possible to predict changes in species distribution by examining ecosystem change caused by 
rapid global warming. While abiotic factors such as temperature, may pose strict limits to the 
distribution of species, so too can biotic factors such as species interactions, i.e., between 
plants and pollinators, and competition (Damos and Savopoulou-Soultani, 2011; Miller-
Struttmann and Galen, 2014; Rasmont et al., 2015; Kuppler et al., 2020). On a more discrete 
scale, functional traits, such as flower size, can be influenced by temperature, e.g., growing 
smaller in response to colder temperatures (Dai et al., 2017). However, the influence from 
biotic factors, such as visiting pollinators, have been shown to cause plants to break from the 
trend with temperature and instead keep or increase their flower size, even in colder 
temperatures, due to selection for certain complementary traits (e.g., corolla depth; Egawa, 
Hirose and Itino, 2020; Wei et al., 2021). This is of particular interest for insect pollinators, 
as they serve a critical role in maintaining plant biodiversity and are especially susceptible to 
changes within their environment (Burkle, Marlin and Knight, 2013; Wei et al., 2021). 

Insect pollinators provide vital ecosystem functions by transporting pollen between flowering 
plants (Daily, 1998). These plant-pollinator interactions serve the reproduction of flowering 
plants and as food resources for the pollinator and, in turn, increases food availability to other 
organisms in the form of fruits and seeds (Klein et al., 2007). For insect pollinators, flower 
preference can be partially explained by the relationship between feeding parts (e.g., 
proboscis and head size) and floral morphology (e.g., petal length, position of the 
inflorescence, and corolla length), suggesting that individuals are more likely to visit flowers 
where floral and pollinator morphology correlates (bumblebees (Bombus): Ranta and 
Lundberg, 1980; Klumpers, Stang and Klinkhamer, 2019; butterflies (Rhopalocera): Szigeti 
et al., 2020). Mismatch between insect and flower morphologies increase the handling time 
when foraging, and too large of a mismatch can impose a functional threshold where foraging 
is no longer practical (Stang, Klinkhamer and van der Meijden, 2007; Klumpers, Stang and 
Klinkhamer, 2019). Insects with long proboscises relative to floral morphology can still visit 
plants with short corollas. However, these tend to have nectar with lower sugar concentration 
compared to plants with long corollas: Therefore, insects with a long proboscis have to spend 
more time foraging to receive the same amount of energy reward from short-corolla plants 
(Klumpers, Stang and Klinkhamer, 2019). 

These examples of trait matching are hypothesised to have come about due to fecundity 
driven co-evolution of flowering plants and pollinators that have occurred over millions of 
years of climatic variation (Goulson, 2010). However, with the recent unprecedented rapid 
warming of the planet, it is important to understand the possible impacts on these 
relationships, especially from an anthropocentric point of view, as a majority of our food 
crops are insect pollinated (Daily, 1998; Klein et al., 2007; IPCC, 2021). One of the places 
where global warming is particularly impactful today is the Arctic, where short growing 
seasons and long, harsh winters can put extreme selection pressure on species adapted to 
these environments (Gilg et al., 2012; IPCC, 2021). 
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One such group are the bumblebees (genus Bombus), which have, unlike most insects that are 
generally ectothermic, the ability to generate and maintain a much higher body temperature 
than their surroundings (Bernd, 1979). Recently, several alarming studies have pointed to a 
rapid decrease in pollinator biomass, and that many historical plant-pollinator interactions 
may have been lost. Here a warming climate in addition to loss of spatial, and temporal co-
occurrence between pollinator and plant as a result of habitat loss are among the most cited 
reasons (Hegland et al., 2009; Burkle, Marlin and Knight, 2013; Hallmann et al., 2017). 
While warming is likely to affect plant-pollinator interactions globally, the rapid warming of 
the Arctic is hypothesized to cause changes that may be too fast for many species to adapt to 
(Overland et al., 2014; Rasmont et al., 2015; Ballinger et al., 2020; IPCC, 2021).  

In the Arctic and at higher elevations, where the growing season is particularly short, autumn 
and winter warming has led to a longer growing season (Miller-Rushing and Inouye, 2009). 
This change in timing and length of the growing season can shift flowering and pollinator 
phenology that can, in turn, lead to a mismatch, resulting in a reduction in pollinator 
visitation and consequently, reduced seed production in plants (Hegland et al., 2009; Miller-
Rushing and Inouye, 2009; Gallagher and Campbell, 2020). Additionally, Arctic bumblebee 
species with long proboscis visit a wider range of flower sizes than their lower latitude 
counterparts, where increased competition for resources drive specialization (Miller-
Struttmann and Galen, 2014). Therefore, could rapidly warming temperatures influence 
interspecies competition throughout the season as southern species track their thermal niches 
northwards, and, in turn, influence competition and specialization? If so, there is a potential 
for mismatches to occur between plant and pollinator species where trait matching has 
coevolved. 

Seasonal temperature difference affects the size of emerging bumblebees, and the castes vary 
in size and the timing of activity during the growing season (Scaven and Rafferty, 2013). 
Queens are the first to emerge in late spring or early summer and are on average larger than 
the other castes (Goulson, 2010). The drones have an intermediate size and emerge later 
together with the new generation of queens (Goulson, 2010). Workers have the most 
intraspecific morphological variation and are on average the smallest of the castes (Bernd, 
1979). Worker size also varies over the season, stemming from development speed being 
affected by temperature and food availability, with workers early in the season being smaller 
than later in the season due to more extreme weather and limited food availability (Bernd, 
1979; Scaven and Rafferty, 2013). Additionally, workers are generally the most numerous 
caste within a colony, increasing in numbers over the early summer, until the production of 
drones and queens start (Bernd, 1979). The bumblebee annual cycle therefore provides a 
natural case study to understand how global temperature increases, and competition driven 
niche partitioning, affect pollinator traits and their interactions with flowering plants. This is 
especially true at high latitudes where the rate of temperature change is three times the global 
average (IPCC, 2021). 

Indeed, traits of both plants and pollinators can vary depending on their environment, either 
through trait plasticity or local adaptation. For example, functional traits of the plant 
Pedicularis siphonantha were found to grow larger in response to being transplanted to a 
warmer location at lower elevation (Dai et al. 2017). Additionally, Egawa, Hirose and Itino 
(2020) found that the corolla of Prunella vulgaris were shorter at higher elevations, 
representing a colder climate. However, Egawa, Hirose and Itino (2020) found longer corolla 
lengths where local bumblebee populations had long proboscises, similar to those at lower 
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elevations. Elevated temperatures have been shown to reduce the size of adult bumblebees 
(Guiraud et al., 2021). While size-matching between bumblebee body size and the distance 
between plant reproductive parts have been shown to be an important factor for pollen 
transfer, this relationship creates opportunities for a mismatch in either direction, that can 
result in reduced seed production when either plant or pollinator morphology changes 
independently to other abiotic or biotic conditions (Solís-Montero and Vallejo-Marín, 2017). 
Therefore, a reduction in body size as the climate warms could influence the rate of 
successful pollen transfer of plants, if the plants do not adapt simultaneously, causing reduced 
fecundity of Arctic specialist species, and may lead to eventual species loss (Hegland et al., 
2009; Burkle, Marlin and Knight, 2013; Scaven and Rafferty, 2013; Solís-Montero and 
Vallejo-Marín, 2017).  

To study the impacts of warming on organisms and their interactions, environmental 
gradients offer a powerful study method (Sundqvist, Sanders and Wardle, 2013; Miller-
Struttmann and Galen, 2014; Egawa, Hirose and Itino, 2020). An elevational gradient can 
serve as a space-for-time substitution used to predict changes in climate over large latitudinal 
distances, due to the predictable way temperature changes with both elevation and latitude 
(Sundqvist, Sanders and Wardle, 2013). In the context of global warming, gradients can be a 
powerful way to predict changes over time (Likens, 1989). Therefore, examining plant-
pollinator interactions over an elevational gradient has the potential to reveal the possible 
impacts of global warming on both plant and pollinator communities, such as, phenological 
and trait mismatches, and both northward and upslope spread of species better adapted to 
warmer environments (Scaven and Rafferty, 2013; Sundqvist, Sanders and Wardle, 2013; 
Miller-Struttmann and Galen, 2014; Martinet et al., 2015; Rasmont et al., 2015). 

1.2 Hypothesis and predictions 
This study explores the possible relationship between the matching of bumblebee and 
flowering plant traits along an elevational gradient in the Swedish mountains. Here a 
diversity of bumblebee and flowering plant species form a range of communities along the 
elevational gradient. I ask if there is a relationship between plant and pollinator traits that 
track elevation (which is a proxy for temperature change). I hypothesize that if there is a 
relationship then it should also track seasonal changes along the gradient. 

The first hypothesis (H1) is that plant floral traits predict visiting bumblebee proboscis length 
along the elevational gradient, with the predictions that (P1.1) plants with restrictive flower 
morphology (i.e., flower shapes which require a certain proboscis length, in order to access 
the nectar and pollen rewards), are positively correlated with bumblebee body size (a proxy 
for proboscis length), and (P1.2) plants traits (i.e., petal length) for those with unrestrictive 
floral morphology (i.e., flower shapes which do not require a certain proboscis length, in 
order to access the nectar and pollen rewards), does not correlate with bumblebee body size 
(a proxy for proboscis length; Figure 1a, 1b). The second hypothesis (H2) is that trait 
matching between flower morphology and proboscis length is influenced by time of year 
(growing season) along the elevational gradient. The predictions for H2 are that (P2.1) the 
correlation between flower restrictiveness and bumblebee body size (proxy for proboscis 
length) gets stronger over the growing season until flowers disappear, and (P2.2) the 
correlation between flower petal length and body size (a proxy for proboscis length) gets 
weaker with increasing elevation (Figure 1c, 1d). 
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Figure 1. Conceptual model of hypotheses 1 and 2. Showing the relationship between petal length and 
body size for a restrictive flowers and unrestrictive flowers. Additionally, showing how trait-matching 
will change b with elevation and c over the season. 

2 Methods 
2.1 Field site 
The research was conducted in Abisko National Park, Sweden, along an elevational transect 
(420-1164 m a.s.l.; est. 1916; Fries, 1925), located on the eastern slope of Mt. Nuolja (Fig. 2). 
The transect transitions from a gradient of mountain birch forest at the lowest elevations to a 
shrub transition zone and reaches the alpine zone at its highest elevations, representing large 
scale latitudinal changes in vegetation caused by the progressively colder climate closer to 
the poles. 
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Figure 2. Map of vegetation zones along the transect, leading up Mt. Nuolja in Abisko National Park. 
The boundary of the national park is represented in green. The permanent survey plots are named after 
the poles they are located between. The map was created using elements from the Property map, and 
Terrain model grid 1+ © The Swedish Mapping, Cadastral and Land Registration Authority. 
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Figure 3. A sketch of the survey plots, with numbered arrows indicating walking direction. 

Thirteen permanent survey plots along the transect were surveyed between 25 May and 3 
September 2021. The plots are 45 x 45 m and divided into four equal quadrants (Fig. 3). The 
mountain birch (Betula pubescens) forest has a field layer dominated by heath (Empetrum 
nigrum, Vaccinium myrtillus, V. uliginosum, and V. vitis-idaea) and at the higher elevations 
the field layer is dominated by forbs (e.g., Geranium sylvaticum, Myosotis decumbens and 
Trollius europaeus) and grasses. In the lower (tall) shrub zone, Salix myrsinifolia and S. 
phylicifolia, are the dominating species, whereas in the upper reaches, the low shrubs, S. 
glauca and S. lanata, are dominant (Figure 4). The alpine zone can be divided into meadow 
and heath habitats, with a diversity of other habitats (e.g., snow beds, wind-blown rocky 
fields, and cliffs). Following the natural gradient of the vegetation, the transect is divided into 
five zones, with the survey plots split between them (lower birch forest; n = 3, upper birch 
forest; n = 2, tall willow shrub; n = 3, low willow shrub; n = 2, and alpine; n = 3; Fig. 2). 
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Figure 4. Pictures of the typical vegetation of each zone. (a) Plot 09-10 (460 m a.s.l.), taken 7 June 
2021, shows mountain birches and a Vaccinium-dominated ground layer. (b) Plot 35-36 (749 m a.s.l.), 
taken 21 August 2021, shows a dense layer of tall Salix shrubs, with forbs scattered at the ground 
layer. (c) Plot 45-46 (901 m a.s.l.), taken 19 July 2021, shows patches of short Salix shrubs, and a 
mixture of forbes and heath. (d) Plot 65-66 (1087 m a.s.l.), taken 1 August 2021, shows the patchy 
vegetation cover of grasses and heath, typical for the higher elevation plots. 

2.2 Field survey 
Surveys began late May, as soon as the snow started to melt and continued through the end of 
the growing season (defined to be when less than 5% of the maximum number of bees, 
spotted in a day, had been spotted over the course of the sampling week; Stemkovski et al., 
2020). When conducting the field survey, every other plot was surveyed each field day, to 
increase the chance of getting samples from each of the vegetation zones in case adverse 
weather prevented sampling. All the plots were surveyed twice a week, spread over four 
days. The starting plot of each day were randomized, to prevent the plots being surveyed at 
the same time each day. The surveys took place between 0800 and 2300 to coincide with the 
active foraging hours of the bumblebees in this region (Stelzer and Chittka, 2010).  

Each plot was observed for 20 minutes by two people, walking a standardized route around 
the plot – first, a figure of eight around the outside and through the middle of the plot, 
followed by a second loop around the outside (Fig. 3). All bumblebees observed flying or 
foraging inside the plot during the survey were recorded, and the species and caste were 
recorded with certainty of 1-3. If foraging, the visited plant species, and height was noted, 
and, if known, the visited flower was taken as a sample for later measurement. If the exact 
flower on a plant was uncertain, up to three of the most likely candidates were taken, and 
later two were randomly discarded. An attempt was made to catch all observed bumblebees 
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with a 45 cm diameter butterfly net. If caught, the time was paused and the bumblebee was 
transferred into a plastic holding pot and put into a dark, insulated bag. The time was resumed 
when the survey was resumed. After the 20-minute survey was completed, the captured 
individuals were identified, the caste determined, and photographed in a marking cage with a 
standardized ruler for later size measurements (Söderström, 2017). Observations where 
bumblebee species or caste were unknown, were excluded. Additionally, Bombus 
alpinus/polaris, B. hortorum/jonellus, and B. norvegicus/sylvestris, were grouped as species 
aggregates (Williams et al., 2015). A total of 1443 bumblebees were caught out of 2723 
observed during the 2021 field season, with 416 flying (obs. n = 1223) and 1027 foraging 
(obs. n = 1500), out of these, 318 could not be assigned to a species (Table 1). 

Table 1. Total number of bumblebees caught, by species and caste. 

Bombus Species Queen Drone Worker Total 
B. alpinus/polaris 27 6 5 38 

B. balteatus 36 31 77 144 

B. bohemicus 10 1 - 11 

B. cingulatus 3 - 3 6 

B. flavidus 2 1 - 3 

B. hortorum/jonellus 22 61 122 205 

B. hyperboreus 11 8 - 19 

B. hypnorum - 1 - 1 

B. lapponicus 52 74 90 216 

B. lucorum 31 18 91 140 

B. monticola 29 88 77 194 

B. norvegicus/sylvestris 7 11 - 18 

B. pascuorum 14 10 66 90 

B. pratorum 5 43 89 137 

B. soroeensis - - 1 1 

B. wurflenii - 2 - 2 

Total 249 355 621 1125 

 

2.3 Bumblebee traits 
As measuring proboscis length is a destructive sampling method, it could not be measured 
during the field surveys, intertegular distance (ITD; distance between the two wing bases) 
was used as a proxy for proboscis length as ITD has been shown to predict proboscis length 
of bees (Cariveau et al., 2016; unpublished data from this study). To establish a relationship 
between ITD and proboscis for the local population, individuals of all castes from 11 species 
were collected outside of Abisko National Park (Table 2). Bumblebee body size was 
measured using ITD, a standardized method, by placing two landmarks onto each image of 
bees in the marking cage with a ruler for scale (Cane, 1987; Fig. A1). The landmarking was 
done with ‘TPSDig’ (version 2.31) and using the ‘geomorph’ R-package (version 4.0.2) to 
measure the distance between the landmarks (Rohlf, 2006; Adams et al., 2021; Baken et al., 
2021).  
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Table 2. The number of individuals of each species and caste that were used for allometry 
measurements. 

Bombus species Queen Worker Drone Total 

B. alpinus/polaris 10 6 1 17 

B. balteatus 13 7 13 33 

B. hortorum 6 12 - 18 

B. hortorum/jonellus 8 8 - 16 

B. hyperboreus 7 - - 7 

B. jonellus 4 1 5 10 

B. lapponicus 13 9 10 32 

B. lucorum 4 12 - 16 

B. monticola 10 9 9 28 

B. pascuorum 10 11 - 21 

B. pratorum 4 11 3 18 

Total 89 86 41 216 

 

The bumblebees were also photographed in a marking cage for size measurement (using the 
same method for the other parts of the study), after which the proboscis was removed and 
photographed under a stereomicroscope fitted with a camera. The prementum of the 
proboscis was then measured using ‘TPSdig’ (version 2.31), and a scaling equation for each 
species and caste were used to determine the relationship between body size and proboscis 
length (Rohlf, 2006; Cariveau et al., 2016). Prementum was used as a measurement of 
proboscis length since it has been found to be a good predictor of total proboscis length 
(Cariveau et al., 2016). The allometric scaling was done using a mixed effects model with 
species and caste as random effects, with the R package ‘lme4’ (version 1.1-28; Bates et al., 
2015; Fig. 4). Additionally, mixed effects models are less restrictive in sample size of random 
effects, and, thus, Bombus species did not have to be excluded on the basis of insufficient 
sample size (Bates et al., 2015). Given the strong allometric relationship between proboscis 
length and ITD, ITD is used as a proxy for all further analysis of the relationship between 
floral and bumblebee traits. 
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Figure 5. Relationship between intertegular distance (ITD) and prementum length in Bombus 
species. Coloured dots represent observed measurements, and the coloured lines represent the 
predicted relationship between prementum length and ITD. 

 
2.4 Plant traits 
Photos of petals, stamen, and pistil were taken of the dissected flowers, and measured in 
ImageJ (version 1.53k; Schneider, Rasband and Eliceiri, 2012) with the line tool or 
segmented line tool for curved objects. Petal length was used instead of measuring corolla 
directly because it was much more repeatable, due to the number of samples collected (N = 
534) and that the corolla rapidly degrades making it impossible given remote fieldwork. 
Petals were measured from the tip of the petal to the nectaries. For plant species that had 
flowers which opens up part-way up the petals (e.g., Silene dioica), length was measured 
from the flower opening to the nectaries. For plant species with non-uniform petal types (e.g., 
Astragalus alpinus), the least restrictive petal type was used (Fig. A2). The sepals of Trollius 
europaeus were measured in place of the petals, as they function the same way as most other 
species’ petals (Zhao and Wang, 2015). Restrictiveness was determined for each of the 
collected plant species, using the classification of flower shape, made by Wei et al. (2021), as 
a proxy for restrictiveness (Table 3). 
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Table 3. The sampled plant species used for modelling. Flower shapes of collected species based on 
the classifications used by Wei et al., (2021), sorted by restrictiveness (N = 434). 

Plant species Flower shape Restrictiveness n 
Epilobium angustifolium open unrestrictive 3 
Geranium sylvaticum open unrestrictive 86 
Potentilla crantzii open unrestrictive 1 
Pyrola rotundifolia open unrestrictive 1 
Rhodedendron lapponicum funnelform unrestrictive 3 
Viola biflora labiate unrestrictive 6 

Andromeda polifolia bell-like restrictive 4 
Astragalus alpinus pea-like restrictive 46 
Cassiope tetragona bell-like restrictive 1 
Diapensia lapponica salverform restrictive 1 
Hieracium sp. aster-like restrictive 1 
Melampyrum pratense labiate restrictive 2 
Pedicularis lapponica labiate restrictive 17 
Rhinanthus minor labiate restrictive 6 
Saussurea alpina aster-like restrictive 6 
Silene acaulis salverform restrictive 1 
S. dioica salverform restrictive 4 
Solidago virgaurea aster-like restrictive 107 
Vaccinium myrtillus bell-like restrictive 26 
V. uliginosum bell-like restrictive 15 
V. vitis—idaea bell-like restrictive 32 

 

Since there were no plants with flowers that resembled the bells of the heath species 
(Ericaceae, e.g., Andromeda polifolia, V. vitis-idaea) in Wei et al. (2021), the “bell-like” 
shape was added and classified as restrictive because their narrow opening. The unique shape 
of T. europaeus made it difficult to fit into either the restrictive or unrestrictive group due to 
them being able to both be open and closed (Ibanez, Dujardin and Després, 2009). As a result 
of this uncertainty, T. europaeus (n = 5) were excluded from the analysis. Salix spp. (n = 48) 
were also excluded from the analysis due to their unique flower morphology (which makes 
them difficult to classify) and the fact that they were visited almost exclusively by queens in 
the early season when no other flowers are in bloom. Further, T. europaeus have different 
petal structures making comparisons with other plant species visited in this study impossible. 
In total, 434 flowers were measured, with 326 being restrictive, and 108 being unrestrictive. 

2.5 Statistical analyses 
2.5.1 H1: Plant floral traits predict visiting bumblebee proboscis length 
To examine the relationship between petal length and ITD, first, the intra- and interspecies 
bumblebee size difference needed to be known. To do this a linear model was fitted, using 
Bombus species and caste as independent variables, and ITD as the dependent variable. All 
captured bumblebees were used in this analysis, regardless of whether the bumblebees were 
foraging or flying. The analysis excluded species with less than five observations. The 
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relationship was evaluated using 1225 bumblebees (249 queens, 355 drones, 621 workers). A 
linear model was also used to test for differences in petal length of restrictive versus 
unrestrictive flowers. 

Next, the ITD of bumblebees by restrictiveness of the visited flower was assessed, using a 
mixed effects model fitted with the interaction between species and caste as random effects. 
Using Bombus species and caste as random effects allows the mixed effect model to account 
for the differences in ITD between species and caste. 

Finally, the log-ratio of petal length to ITD regarding restrictiveness was examined using a 
mixed effects model. The model was fitted with Bombus species and caste as random 
intercept, and restrictiveness as random slope. Including restrictiveness as random slope in 
the model allows for evaluating the difference in response, between species and caste, to 
restrictive and unrestrictive petals. For this model 369 observations and eleven species were 
used, while 144 samples were excluded due to unknown species, caste or missing ITD 
measurements. 

2.5.2 H2: Trait matching is influenced by time of year and elevation 
When analysing the spatiotemporal effects on the relationship between petal length and ITD, 
time was expressed as ’days since onset of sampling (25 May)’. The scaling was done to 
make model intercepts meaningfully visualize petal length at the beginning of the season. 
Time and elevation were fitted using mixed effects model that, like for the first hypothesis, 
used the log-ratio of petal length to ITD as response variable. Additionally, the relationship 
between restrictiveness and both time, and elevation were assessed in the model. Divergence 
of the mean ratio of petal length to ITD away from zero would be interpreted as a decrease, 
and the inverse would be interpreted as an increase in trait-matching. To acquire the desired 
intercepts for elevation at the lowest plot instead of at sea level mentioned in the methods 
section, a post hoc scaling of elevation using the model results was done. 

For the mixed effects models, two coefficients of determination (R2) were generated using the 
‘MuMIn’ R-package (version 1.43.17; Bartón, 2020). These R2-values were Marginal R2, 
representing the R2 of the fixed effects, and conditional R2, representing the R2 of the full 
model, including both fixed and random effects (Nakagawa, Johnson and Schielzeth, 2017). 
Models were assessed based on Akaike Information Criterion (AIC). Due to collinearity with 
ITD, the interaction between Bombus species and caste were not assessed in any linear 
models. The assumptions of normality and random distribution of the residuals were met for 
all models. 

3 Results 
3.1 H1: Plant floral traits predict visiting bumblebee proboscis length 
There was a significant difference in ITD, interspecies, intraspecies, and between castes, with 
caste explaining the greatest amount of variation (Caste; F = 1645; p < .001; Species; F = 
223; p < .001). The model used to examine the ITD of bumblebees by flower restrictiveness 
showed that bumblebees visiting unrestrictive flowers were significantly smaller than those 
visiting restrictive flowers (lme: restrictive flowers; mean (± s.e.) ITD = 0.59 ± 0.023 cm; n = 
566; t(31.75) = 25.16; p < .001; unrestrictive flowers; 0.57 ± 0.004 cm; n = 207; t(739.18) = -
4.25; p < .001). Additionally, the variation of ITD was larger for restrictive petals than 
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unrestrictive petals. There was a significant difference in petal length between restrictive 
flowers (mean (± s.e.) = 0.74 ± 0.015 cm; n = 326) and unrestrictive flowers (1.55 ± 0.04 cm; 
n =108; Difference = 0.82 cm, t(161.95) = -25.20, p < .001).  

Finally, when examining the effect of restrictiveness on the ratio of petal length to ITD, the 
mean (± s.e.) ratio for restrictive flowers were 0.22 ± 0.06 log(cm-2), and 0.95 ± 0.07  
log(cm-2) for unrestrictive flowers (Table 4). 

Table 4. Summary of a linear mixed-effects model investigating the log-ratio between petal length of 
visited plants, and bumblebee (Bombus spp.) intertegular distance (ITD). The random term ‘Rest’ is 
short for restrictiveness. Values in bold were considered statistically significant (p ≤0.05). AIC = 
171.43, marginal R2 = 0.38, conditional R2 = 0.71. N = 369. 

Coefficient estimate (± s.e.) n t-value p-value variance of random term 
Intercept 0.22 ± 0.06 269 3.71 0.001 

 

Unrestrictive 0.73 ± 0.071 100 10.26 < 0.001 
 

1|Species:Caste  
  

0.078 
Rest|Species:Caste  

  
0.047 

Residual 
 

 
  

0.072 

 

3.2 H2: Trait matching is influenced by time of year and elevation  
No change over elevation or across time was found for ITD; there was, however, a significant 
change in petal length over both elevation and time (elevation; Δ (± s.e.) = -0.045 ± 0.014 cm 
100 m-1; t = -3.17; p = .002; time; -0.34 ± 0.13 cm 100 m-1; t = -2.52; p = .012). Model results 
revealed significant effects on the ratio of petal length to ITD, for both elevation and 
restrictiveness (elevation; F = 21.61; p < .001; restrictiveness F = 50.90; p < 0.001), as well 
as the interaction between the two (F = 43.757; p < .001). The ratio of petal length to ITD 
changed by 0.039 ± 0.079 log(cm-2) 100 m-1 (p = .001) for restrictive flowers, and by -0.22 ± 
0.26 log(cm-2) 100 m-1 (p < .001) for unrestrictive flowers, important to note is that the 
standard error remains untransformed (Fig. 6). No relationship was found between the ratio 
of petal length to ITD and date. 



 

 14 

Figure 6. The change in ratio of petal length: ITD with elevation for restrictive and unrestrictive 
flowers. Plotted points are the recorded observation, and the predicted lines for restrictive and 
unrestrictive flowers were generated by the mixed effects model. Marginal R2 = 0.57 and conditional 
R2 = 0.74. Vertical lines signify the approximate extend of the lower birch forest (420 m - 556 m 
a.s.l.), upper birch forest (556 m - 670 m a.s.l.), tall shrub zone (670 m - 846 m a.s.l.), low shrub zone 
(846 m - 933 m a.s.l.), and the alpine zone (933 m - 1164 m a.s.l.).  

4 Discussion 
The results support the hypothesis that petal length predicts visiting bumblebee proboscis 
length, as ITD (as a proxy for proboscis length) could be predicted by the petal length and 
restrictiveness of the flower. Interestingly, while it was predicted that only restrictive flower 
traits would be able to predict proboscis length, the results suggest that unrestrictive flower 
traits too could predict proboscis length, a result not previously explicitly discussed (Inouye, 
1980; Stang, Klinkhamer and van der Meijden, 2006). These results build on the existing 
body of knowledge suggesting the importance of size matching between pollinator proboscis 
length and flower petal length (Ranta and Lundberg, 1980; Klumpers, Stang and Klinkhamer, 
2019). Another point of interest is that the maximum ITD was larger for bumblebees visiting 
restrictive flowers than for those visiting unrestrictive flowers, suggesting that larger 
individuals tended to avoid unrestrictive flowers in favour of restrictive ones, as hypothesised 
by Klumpers, Stang and Klinkhamer (2019; Fig. A3). While there was a difference in 
maximum ITD, no such difference was found for the minimum ITD, contrary to the findings 
of Stang, Klinkhamer and van der Meijden (2007).  

The ratio of petal length to ITD along the transect increased for restrictive flowers and 
decreased for unrestrictive flowers. These results support the hypothesis that trait matching 
between flower morphology and proboscis length is affected by elevation, but not by time. 
The correlation between petal length and ITD (as a proxy for proboscis length) decreased for 
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restrictive petals as predicted. Surprisingly however, the correlation increased for 
unrestrictive flowers. As such, an interesting question arises from these results, as the 
different effects of ratio with elevation between restrictive and unrestrictive petals, suggest a 
normalization between the two, which could be evidence of more generalist foraging patterns 
as it pertains to petal length of flowers (Miller-Struttmann and Galen, 2014). Furthermore, the 
ratio of petal length to ITD changed the most for unrestrictive petals, paired with the results 
that suggests that larger individuals tended to prefer restrictive flowers, also agrees with the 
findings of Miller-Struttmann and Galen (2014) that generalism tends to increase with 
elevation. That no change in ratio over time was found could be because the hypothesised 
specialization is more related to primary productivity, e.g., pollen and nectar availability, than 
seasonal progression. If productivity is a better explanation, then both elevation, as described 
by Miller-Struttmann and Galen (2014), and time could instead be described as two 
productivity gradients, decreasing with elevation, and increasing then decreasing with the 
progression of the growing season.  

These findings show that trait-matching between bumblebees and flowers is an influential 
factor for bumblebees when deciding what plants to visit. Future studies should look into how 
other traits could explain the apparent size matching between unrestrictive flowers and 
proboscis, such as distance between anther and style (Solís-Montero and Vallejo-Marín, 
2017). Lastly, a study examining productivity as a function of elevation and seasonal 
progression might better capture the change in specialization. Nevertheless, this study 
demonstrates the importance of considering individual level traits when looking at plant 
preference, it also creates a framework for future studies, assessing plant-pollinator networks. 

As the climate warms, the number of pollinator specialists is likely to increase due to 
increased interspecies competition (Miller-Struttmann and Galen, 2014). How this increased 
competition will affect the more generalist Arctic species is uncertain, and a topic for future 
research.  
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Appendix 

 
A1. A Bombus lapponicus drone in a marking cage, with landmarks (red dots) placed at the wing 
bases for to measure intertegular distance.  

  



  

 

 

 
A2. Petal measurements from flowers with unique shapes. For Pedicularis lapponica, Melampyrum 
pratense, Rhinanthus minor and Viola biflora, anterior petals were used. The inner floret was used in 
cases when an Asteraceae had differentiated inner and outer florets, e.g., Solidago virgaurea.  

 



  

 

 
A3. Intertegular distance (ITD) of bumblebees with a red and blue column for bumblebees visiting restrictive and unrestrictive flower types, respectively. 
Figure a shows species, and b shows all individuals of each cast. 


